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Approaching classicality in quantum accelerator modes through decoherence

M. B. d’Arcy, R. M. Godun, M. K. Oberthaler,* G. S. Summy, and K. Burnett
Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

S. A. Gardiner
Institut für Physik, Universita¨t Potsdam, Am Neuen Palais 10, D-14469 Potsdam, Germany

and Institut für Theoretische Physik, Universita¨t Hannover, Appelstraße 2, D-30167 Hannover, Germany
~Received 23 November 2000; revised manuscript received 7 August 2001; published 30 October 2001!

We describe measurements of the mean energy of an ensemble of laser-cooled atoms in an atom optical
system in which the cold atoms, falling freely under gravity, receive approximated-kicks from a pulsed
standing wave of laser light. We call this system a ‘‘d-kicked accelerator.’’ Additionally, we can counteract the
effect of gravity by appropriate shifting of the position of the standing wave, which restores the dynamics of
the standardd-kicked rotor. The presence of gravity (d-kicked accelerator! yields quantum phenomena, quan-
tum accelerator modes, which are markedly different from those in the case for which gravity is absent
(d-kicked rotor!. Quantum accelerator modes result in a much higher rate of increase in the mean energy of the
system than is found in its classical analog. When gravity is counteracted, the system exhibits the suppression
of the momentum diffusion characteristic of dynamical localization. The effect of noise is examined and a
comparison is made with simulations of both quantum-mechanical and classical versions of the system. We
find that the introduction of noise results in the restoration of several signatures of classical behavior, although
significant quantum features remain.
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I. INTRODUCTION

The consensus of theoretical investigations into cha
systems has been that many effects peculiar to clas
chaos~e.g., exponential divergence in phase space of p
beginning in close proximity! are no longer observable in
quantum system@1,2#. The challenge has been to obser
which aspects of characteristically chaotic behavior do p
sist in the quantum case, and hence to establish the ch
teristics of ‘‘quantum chaos,’’ thus defining more carefu
what such a concept means. Furthermore, if the behavio
the quantum system can be made to resemble more clo
that of a theoretical classical system~in terms of its momen-
tum distribution and variation of mean energy with tim!
then it is possible to investigate quantum-classical corresp
dence and how the observed classical behavior in nature
its origin in the quantum domain. In the case of classica
chaotic systems this correspondence cannot be made u
the semiclassical Bohr-Sommerfeld@3,4# or Einstein-
Brillouin-Keller @5–8# quantization schemes that are app
priate for systems with more than one degree of freedom@9#.

In this paper, we utilize an atom optical system in whi
cold trapped atoms are released and periodically kicked w
a vertically oriented, spatially periodic potential created b
standing wave of laser light. Thisd-kicked accelerator is
equivalent to a realization of thed-kicked rotor@10# with an
additional linear potential due to gravity. This can marked
alter the behavior of the system, resulting in, for examp
quantum accelerator modes@11#.

We study the variation in the mean energy of the atom

*Present address: Universita¨t Konstanz, Fachbereich Physik, Un
versitätsstraße 10, D-78457 Konstanz, Germany.
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This quantity is useful in characterizing the behavior of t
system because its variation is considerably different
pending on whether the system is classical or quantum
chanical. We also introduce noise through induced sponta
ous emission, and find that the noise results in the restora
of a classical-like variation in the mean energy of the atom
the same level of noise produces little modification to t
gross behavior of the corresponding classical system.
consideration of the system’s behavior in the presence
noise, we discuss the extent to which this can be viewed
being more classical. We find good qualitative agreem
between experimental results and numerical simulations.

In Sec. II we summarize the theoretical background to t
investigation and the motivation for undertaking it. In Se
III we explain our experimental and numerical methods, a
in Sec. IV we present and discuss our results.

II. MOTIVATION

Due in particular to the ease of integrating the equatio
of motion @12–15#, a great deal of theoretical study of ch
otic dynamics, both classical and quantum mechanical,
been carried out on one-dimensional integrable systems
turbed by a periodic train of position-dependent kicks, ‘‘d-
kicks,’’ whose time dependence is described by ad function.
Experimentally accessible atom optical systems are, wit
certain parameter regimes, capable of closely emulating s
idealized dynamics, and thus provide a direct check for t
oretical and numerical predictions.

We have achieved an atom optical realization of suc
system, thed-kicked accelerator, the relevant dynamics
which can be described by the following Hamiltonian:

Ĥ5
p̂2

2m
1mgx̂1

I max

G
@11cos~Gx̂!#(

N
d~ t2NT!, ~1!
©2001 The American Physical Society33-1
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wherex̂ is the position operator,p̂ is the momentum opera
tor, m is the particle mass,g is the gravitational acceleratio
of free fall, I max is the magnitude of the maximum possib
impulse received by a classical point particle, G
52p/lspat, wherelspat is the spatial period of the potentia
t is the time,T is the time interval between applications
the potential~the ‘‘pulse period’’!, andN is the kick number.
Note that we use a caret to denoteoperator quantities, so
that, for example,x̂ is the operator corresponding to the cla
sical positionx.

The time evolution of the system can be described in d
crete steps corresponding to successive applications o
kicks, producing a kick-to-kick mapping. We use a conv
nient choice of rescaled effective position and moment
variables,x5Gx and r5GTp/m, to arrive at the classica
mapping

rn115rn1K sin~xn!2g, ~2!

xn115xn1rn111
g

2
. ~3!

We see that there are only two free parameters,K
5I maxGT/m and g5gGT2, and if we setg50, we regain
the standard map, corresponding to the dynamics of the u
d-kicked rotor@12#, in which K is simply the classical sto
chasticity parameter. In our experimental configuration i
possible to effectively varyg independently ofK, so that we
can ~in an accelerating frame! realize simpled-kicked rotor
dynamics@16,17#.

In the quantum-mechanical case we can integrate the
responding Schro¨dinger equation over the interval betwee
two successive kicks. We thus arrive atucn11&5Ûucn&
whereucn& is the wave function just prior to the applicatio
of the (n11)th kick, andÛ is the Floquet operator,

Û5exp@2 i ~gx̂1 r̂2/2!/t#exp@2 iK $11cos~ x̂ !%/t#.
~4!

The Floquet operator describes the wave-mechanical equ
lent of the classical mapping of Eqs.~2! and~3!; note that in
addition toK andg, the quantum evolution depends on t
parametert5\G2T/m52 i @ x̂,r̂ #, which is effectively a
scaled Planck constant. It is possible to regard the effec
the kicking potential on the incident de Broglie waves
being equivalent to that of a phase diffraction grating. T
amplitude of the variation~with position! of the induced
phase shift isfd5K/t, which is the maximum classical im
pulse in units of grating recoils, i.e.,fd5I max/(\G).

Due to the spatially and temporally periodic nature of t
system, phase space is also periodic. Thus classically
need consider only initial conditions such that2p,x i<p
and 2p,r i<p, as these encompass all possible types
dynamical behavior. Quantum mechanically, initial pla
waves whose values ofr differ by 2p respond identically to
the diffractive effect of the kicking potential. Any momen
tum of an initial plane wave is equivalent to a momentum
this range, known as aquasimomentum. This is similar to the
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situation in solid state physics in which any Bloch state
equivalent to the one whose wave vector differs from tha
the first by an integer number of reciprocal lattice vecto
and lies in the first Brillouin zone@18,19#. This property is
due to the spatial periodicity of the system.

In the case of thed-kicked rotor ~i.e., g50), when K
!1 the classical motion of the system is predominan
regular and the majority of this classical phase space con
of stable regions. Any momentum diffusion of an initial e
semble of particles is greatly restricted due to numer
Kol’mogorov-Arnol’d-Moser ~KAM ! tori @55–57#, which
form barriers in phase space through which trajectories m
not pass@12#. As K is increased, the KAM tori progressivel
break up, and the proportion of phase space exhibiting
chastic behavior increases, leading to a much greater po
bility of momentum diffusion. As discussed in Ref.@12#, for
K.0.971 64, momentum increase to arbitrarily large valu
is possible and the behavior is globally chaotic. WhenK
@1 the behavior of the momentum distribution of the syst
is well characterized by random walk diffusion, so the me
energy of the system will increase linearly with kick numbe
The diffusive behavior is not as a result of any randomn
in the force but is due to the pseudorandom behavior ch
acteristic of chaotic dynamics. It can, like any diffusion,
characterized by a diffusion parameter, in generalD(K,g).
Although the global behavior of the system is depend
only on the stochasticity parameterK, the precise behavior o
individual particles depends also on their initial conditions
is, for example, possible for certain particles to fulfil th
condition for linear momentum increase by being in the c
rect position at the instant of every kick so as to receive
maximum possible impulse. Such particles are in an ac
erator mode@12#, and in phase space are to be found in sm
islands, localized around the values ofx for which the poten-
tial gradient is maximum. Their energy increases asN2, so
that the mean energy of an ensemble of particles can
described by

E~N!5D~K,g!Na, ~5!

wherea is a little more than 1. The system is said to exhi
anomalous diffusion whenevera differs from 1 ~when a
.1 the energy growth is superdiffusive; whena,1 the
growth is subdiffusive: it is, for example, possible for co
secutive kicks to cancel out each other’s effect for cert
initial conditions!.

The behavior of the quantum system is radically differe
from that of its classical counterpart and numerous theor
cal investigations concerning it have been made. The m
celebrated aspect of this quantum behavior is dynamica
calization. This was first discovered numerically@16#, and
subsequently explained by analogy with the phenomeno
Anderson localization of electronic states in random lattic
@20,21#. The effects of dynamical localization were first o
served experimentally in microwave ionization of hydrog
atoms@22,23#, and dynamical localization itself was first ob
served directly by Mooreet al. @24# in an atom optical sys-
tem.
3-2
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APPROACHING CLASSICALITY IN QUANTUM . . . PHYSICAL REVIEW E64 056233
When thed-kicks are applied, the mean energy at fi
increases diffusively, i.e., linearly with kick number, as
the classical system. Provided thatt is not a rational multiple
of 4p @13,25#, this diffusive behavior only persists for
finite number of kicks, the so-called quantum break tim
Beyond this, the mean energy of the system no longer
creases; the classical diffusion has been quantum mech
cally suppressed. The final momentum distribution of
ensemble displays a symmetric exponential form whose
off is characterized by the localization length@20#. The spec-
trum of quasienergies associated with the Floquet states~i.e.,
the eigenvalues associated with the eigenstates of the Flo
operator! is discrete, and the Floquet states themselves
exponentially localized and separated in momentum sp
Momentum diffusion is thus limited by the extent in mome
tum space of those Floquet states that are initially occup

When t54pa/b, wherea and b are integers, the spec
trum of quasienergy states is absolutely continuous and
system exhibits a so-called quantum resonance@13,25,26# of
order b. This is characterized by a momentum distributi
that is nonexponential in form, and in which dynamical l
calization does not occur. Instead, for certain initial values
quasimomenta quadratic growth in the energy with k
number occurs in the limit of a large number of kicks. T
values of the quasimomentum for which this quadra
growth occurs depend on the value oft. For all other quasi-
momenta we observe numerically that the mean energy
cillates with kick number. The amplitude and period of the
oscillations grow as the initial quasimomentum approac
one of the resonant values for which unbounded quadr
growth can occur. Since the ensemble consists of a cont
ous range of initial momenta that exhibit these differe
types of energy-growth behavior as kicks are applied,
growth in the mean energy of the ensemble as a whol
linear in the limit of a large number of kicks@27#.

For thed-kicked accelerator (gÞ0), the behavior is dra-
matically modified for certain values oft. Quantum accel-
erator modes@11# appear, characterized by a linear increa
in the momentum along the axis of the external force o
portion of the ensemble of quantum-mechanical particles
pulses are applied. This leads to a pronounced asymm
momentum distribution and as such constitutes an easily
served quantum effect. In the diffractive picture the effect
the kicking potential is to diffract the wave function int
different momentum states, as discussed in Ref.@28#. Those
which rephase after subsequent kicks determine the mom
tum of the accelerator mode. The presence of gravity allo
a small number of states with progressively larger values
momentum to rephase just before the next kick is applie

Any experimental configuration can only approximate
d-kicked system because real kicks must be of finite du
tion. For sufficiently short kicks and particles~in our case
cold caesium atoms! of sufficiently low absolute velocity,
this distinction is unimportant~this will be discussed furthe
in Sec. III A!. A practical realization is also susceptible
noise, ignored in an ideal system. Noise may be due to
tors such as vibrations of the apparatus, variation in time
the applied potential, or spontaneous emission of the ato
We can achieve a system that is approximately ideal
05623
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minimizing these effects. On the other hand, if we can c
trol the noise levels we can investigate systematically a
modifications in behavior. In particular, the presence o
quantifiable level of noise could be useful in attempting
investigate the role of coherence in a system and to w
extent, if any, a quantum system can be regarded as b
more classical if the coherence is perturbed. From a class
viewpoint, the noise introduces a random component@29#
into the momentum incrementation of the standard mapp
with consequent modification to the diffusion parameter.
the quantum case, noise also disturbs the coherence o
wave function. When the noise is weak compared with
kicking strength, the classical motion is only slightly a
fected, whereas the quantum-mechanical motion is sign
cantly modified, in that signatures of characteristically qua
tum behavior, such as dynamical localization, are degrad
We emphasize that we are not discussing the case w
noise dominates the energy growth, either in the class
system or in the quantum system@30#. We also note that,
even with the degradation of particular signatures of qu
tum behavior, the system cannot be regarded as being
classical since we do not approach the limit\→0, which is
a necessary~though not, it has been argued@31#, sufficient!
condition for a system to behave classically.

There have been both theoretical@29,30,32,33# and ex-
perimental@34–40# investigations of the effect of noise. Th
most important result of these is that the diffusive behav
of the system is modified so that the momentum diffusion
no longer zero after the quantum break time. Any diffusi
that takes place after the quantum break time will hencefo
be referred to as ‘‘quantum diffusion,’’ following the con
vention established by Ammannet al. @35#, who argue that
this diffusion is not accounted for by classical behavior
the system but by a modification of the quantum-mechan
behavior in the zero-diffusion case. These previous inve
gations lead us to examine further the effect of noise
modifying the behavior of our system, particularly with r
spect to quantum accelerator modes, which constitute a
nounced quantum effect peculiar to thegÞ0 case.

III. METHODS OF INVESTIGATION

A. Experimental methods

The first experimental investigations of quantum cha
@22,23,41,42# studied the microwave excitation and ioniz
tion of excited hydrogen atoms. Observation of t
coherence-destroying effects of noise@34# used similar tech-
niques involving Rydberg states of rubidium atoms. Mo
recently, atom optical approaches have yielded almost e
realizations of thed-kicked rotor @10,11,28,35–40,43–45#;
this has the great benefit of allowing investigation of t
extensive theoretical predictions available for this parad
matic system. The configuration used in the current exp
ment is a slight modification of that described in our pre
ous work@11,28#.

Our apparatus consists of a glass vacuum cell in which
create a magneto-optic trap~MOT! for caesium atoms
~whose massm is 2.209310225 kg!. A schematic diagram of
the experimental configuration is shown in Fig. 1. Typical
3-3
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a trap consists of 106 atoms and is;2 mm in diameter. The
trapping and molasses cooling use theD2 (62S1/2
→62P3/2)F54→F955 transition ~we denote hyperfine
states of the 62S1/2 level by F, those of the 62P1/2 level by
F8, and those of the 62P3/2 level by F9). The atoms’ distri-
bution in momentum is then Gaussian, centered around
and with a full width at half maximum~FWHM! of 12\k2
~wherek257.3743106 m21 is the wave vector of theD2
light!, corresponding to a temperature of 5mK. The poten-
tial that the atoms experience is produced by the applica
of a standing wave of light from a Ti:sapphire laser that is
GHz red detuned from theD1 (62S1/2→62P1/2)F54→F8
53 transition. TheD1 light is passed through an acoust
optic modulator~AOM! and the emergent first order is d
livered to the vacuum system via an optical fiber and op
that ensure that the light is linearly polarized. The light
then directed vertically downwards through the cell, para
to the gravitational acceleration, and is retroreflected to p
duce a standing wave. Before and after retroreflection,
light is passed through a crystal phase modulator; this
produce a shift in the position of the standing wave betw
two consecutiveD1 light pulses such that, in the frame o
reference of a falling atom, the standing wave appears in
position expected if there were no gravitational field.

The AOM allows the light to be flashed on periodical
with a pulse duration oftp5500 ns and a shape that is a
proximately rectangular in form. The maximum power del
ered to the vacuum system during this pulse is;350 mW.
Due to fluctuations in the power emerging from the Ti:sa
phire laser and in the polarization of theD1 light coming out
of the fiber before entering the polarization-maintaining o
tics, the power delivered to the system can vary by65%
over the time scale of the experiment, while the detuning
vary by ;100 MHz ~i.e., 0.3%!. Passage through the pha
modulator results in a narrowing of the beam and an ove
loss of power. Fitting a Gaussian to the retroreflected be
profile, we estimate the waist of the resulting standing wa
to be;1.0 mm ~FWHM! in the region of the MOT. Addi-

FIG. 1. Schematic diagram of the experimental arrangem
The time of flight ~TOF! measurement of the atomic momentu
distribution is made 50 cm below the MOT, and the crystal ph
modulator allows the atoms to experience different effective gra
tational accelerations.
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tional power losses occur at the retroreflecting mirror and
windows of the vacuum system. Taking all of this into a
count, we estimate the power in the retroreflected be
when incident on the atoms in the MOT, to be;120 mW
and hence the maximum intensity experienced by atom
the standing wave to beI 0;13108 mW/cm2. The time be-
tween consecutive pulses can be varied from 6ms to
210 ms. The sequence ofD1 light pulses is applied 5.2 m
after the end of molasses cooling and lasts for, at most,
ms. The steady-state spontaneous emission rate of atoms
far-detuned light field is given byR5V2G/4dL

2 @46#, where
V is the Rabi frequency of the atoms in the field,G is the
linewidth of the transition, anddL is the detuning of the light
from this transition. In this case, since the red detuning of
D1 light from resonance is 30 GHz, the mean number
spontaneous emissions for each atom over the time of
pulse is less than 231023. The atoms are then allowed t
fall 50 cm under gravity to a point where they pass throu
a sheet of on-resonantD2 light. A time of flight ~TOF! tech-
nique, in which the transmitted intensity of this light is me
sured by photodiodes as a function of time, is used to es
lish the momentum distribution of the atoms. The outp
signal from the photodiodes is passed through a lock-in a
plifier, whose reference signal is at 40 kHz, in order to
crease the signal-to-noise ratio. Since the typical width of
absorption signal is;10 ms, the dither frequency is suffi
ciently high to allow resolution of all its features. The tim
constant of the lock-in amplifier’s low-pass filter is 1 ms, a
this finite bandwidth causes some distortion of narrow m
sured distributions. This leads to an apparent asymmetry
consequent increased width. For example, a distribu
whose true width is 12\k2 has an apparent width due to th
lock-in amplifier of 12.5\k2, and the high-momentum half
width exceeds the low-momentum half-width by;8%. The
asymmetry and width increase are less pronounced for w
distributions~i.e., those with smaller high-frequency comp
nents!.

The energy of an atom is shifted by an amount det
mined, through the light shift, by the intensity and detuni
of the D1 light in which the atom finds itself. Thus th
standing light wave creates a spatially varying sinusoidal
tential for the atoms, in which the maximum Rabi frequen
V0 is given byV0

25G1
2I 0 /I sat, whereG15(2p)4.55 MHz is

the D1 transition linewidth, andI sat51.66 mW/cm2 is the
saturation intensity of this transition. For a sufficiently lar
detuningdL , the excited state amplitude can be adiabatica
eliminated@47,48#. If we then regard the short pulses as b
ing approximated-kicks, the maximum impulse, which th
standing wave can deliver classically to an atom, is given
I max5\V0

2Gtp /(4dL), where G52k1, and k157.025
3106 m21 is the wave vector of theD1 light. We are jus-
tified in making thed-function approximation~and ascribing
the impulse delivered by the finite-duration pulse to that
an instantaneousd-function! provided that the atoms do no
move a distance comparable with the period of the stand
wave during the time for which the light is on. In this ca
any averaging over the spatial variation of the potential, d
to movement of the atoms during the time for which t

t.

e
i-
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APPROACHING CLASSICALITY IN QUANTUM . . . PHYSICAL REVIEW E64 056233
pulse is applied, is negligible. An atom that fulfils this crit
rion is said to be in the Raman-Nath regime. Outside t
regime, the finite pulse duration causes the effective valu
the stochasticity parameter to be reduced as the atomic
locity increases@45#. In our experiment, the momenta a
tained by the atoms were such that, in general, the Ram
Nath condition was imperfectly fulfilled but the degree
averaging over the potential was sufficiently small that
behavior observed was still characteristic of ad-kicked sys-
tem, albeit one with a reduced stochasticity parameter. O
in those cases where the atoms attained the very highest
menta~see Sec. IV B in the discussion of the results! did the
departure from the Raman-Nath regime completely precl
the application ofd-function-like kicks to the atoms.

The importance of the phase modulator is due to the d
matic modifications to the dynamics of the kicked ato
wrought by gravity, namely, the quantum accelerator mo
@11,28#. It is thus very useful to be able to vary gravity
effect, or even counteract it to such an extent that the beh
ior of the system is indistinguishable from the case wh
gravity is truly absent. When the standing wave is shifted
this way so as to remove gravity’s effect, the system is,
course, not completely equivalent to one located in a ze
gravity environment because the rest frame of the atom
our system is not an inertial frame. In general relativis
terms, the rest frame of the atoms in our experiment is
equivalent to the rest frame of atoms in the genuine abse
of gravity. However, this distinction has no effect on t
dynamics of our experimental system. Hence we do have
capability of investigating how atoms react in a reduced-
zero-gravity environment.

In order to quantify the effect of noise, we use addition
laser pulses of controllable intensity. Between each puls
standing wave light, a 4.5-ms pulse ofD2 light, red detuned
by 60 MHz from theF54→F955 transition, is applied.
This induces, with a laser-intensity-dependent probability
transition in an atom after which spontaneous emission
occur. The mean number of induced emissions per atom
D2 pulse is varied between 0 and 0.2. This technique
similar to that used in Refs.@35,38#, in which, however,
lower levels of spontaneous emission were generally
lized. On the other hand, in Refs.@39,40#, the effect of am-
plitude noise was investigated, and the noise level was g
erally significantly higher than that used in our work.

Noise has the effect of randomizing the phase of the w
function of the atom undergoing the transition by introduci
a randomly directed change in its momentum of magnitu
\k2. This upsets the coherence of the evolution from puls
pulse and introduces momentum and hence phase-noise
the system. Note that there is always a background rat
spontaneous emission due to theD1 light of the standing
wave, which is less than 231023 per atom per pulse an
negligible in its effect on the system’s development for t
number of pulses that we are applying. There is also am
tude noise in the potential experienced by the atoms du
fluctuations in the power of theD1 light forming the stand-
ing wave and its detuning. Though small in comparison w
the noise applied through spontaneous emission, its effe
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not completely negligible and will be discussed both later
this section and in Sec. IV.

The experiments were performed in two different co
figurations: with and without the counteraction of gravity
effect, constituting thed-kicked rotor and thed-kicked ac-
celerator, respectively. After the prescribed number of kic
the momentum distribution was measured, the results be
averaged over three runs. The mean energy of the ense
of atoms was then determined from the averaged momen
distribution. These energy values are subject to a degre
uncertainty because those atoms in the wings of the mom
tum distribution, where the signal-to-noise ratio is wor
contribute the most significantly to the mean energy. Th
noise in the signal~‘‘signal noise’’! ~as opposed to noise
introduced by application ofD2 light! can seriously affect
the results. The problem of signal noise in the TOF distrib
tion was most significant in the cases where a large leve
spontaneous emission-inducingD2 light was applied, thus
reducing the size of the signal.

The TOF method measures the population of atoms ov
fixed range of momenta:675\G. The extent of the experi-
mental momentum distribution of atoms, however, was
ways less than this range~and never exceeded660\G), so
it was always necessary to impose a momentum bound
beyond which the data would not be taken into account
any signal in the extrema must be noise. The value of
momentum boundary depended on the momentum width
the atoms. Additionally, to minimize the effect of the sign
noise within the limits specified by the boundary, it was ne
essary to impose a signal threshold below which data
ignored. Both the boundary and the threshold were chose
as to cause negligible degradation to the important featu
of the observed variation in the mean energy, while at
same time reducing the noise present in that variation.
different experimental configurations, different values of t
number of pulses applied or of the pulse period led to diff
ent momentum widths. The momentum boundary for a giv
configuration was chosen so that when the atomic mom
tum distribution was at its widest, as much as possible o
while as little as possible of the signal noise in the mom
tum range beyond, was included. This procedure meant
in the case where the atomic momentum distribution
tended close to the imposed momentum boundary, the
mentum possessed by a very small fraction of atoms in
wings of the distribution was neglected, thus lowering t
mean energy below its true value. We estimate the reduc
in the measured mean energy of the atoms due to the im
sition of a signal threshold, and due to the momentum cut
be in each case less than 5%. On the other hand, in the
where the atomic momentum distribution was much n
rower than the included momentum range, the signal no
with amplitude greater than the threshold and lying with
the momentum boundary led to a mean energy backgro
upon which the true mean energy of the narrow atomic m
mentum distribution was superimposed. Hence the value
mean energy calculated using the experimental data w
higher than would be expected due to the atoms alone in
absence of signal noise. In the case of the narrowest mom
tum distributions, this led to a 5% increase in the calcula
3-5
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mean energy due to the signal noise; for wider momen
distributions the fractional increase was smaller than this

The fact that the laser power delivered to the vacu
system to create the standing wave varies by;10%, and the
detuning of thisD1 light varies by;0.3%,means that the
depth of the potential experienced by the atoms fluctuate
;10%. This amplitude noise in the potential is another
spect in which our experimental system is nonideal and le
to quantitative disagreement between the mean energie
calculated from the experimental data and those wh
would be expected in a noiseless system. Moreover, in
ideal system all atoms experience the same potential. H
ever, in our system the diameter of the trap is somew
larger than the waist of the beam ofD1 light. This means
that about 25% of the atoms~those on the periphery of th
MOT! experience a potential sufficiently reduced below
maximum value that the potential’s effect on their dynam
is small compared with that on atoms in the center of
MOT. Therefore, in the experiments whereD1 light pulses
caused a significant broadening of the momentum distr
tion, the smaller response of these atoms led to a lower m
energy than would be expected if all atoms were expose
the same potential. The mean energy of the atomic ensem
was approximately half the value that would be obtained
all the atoms experienced the mean value offd50.8p ~see
discussion in Sec. IV A!. This goes a long way towards ex
plaining the quantitative difference in the mean energies
culated from the simulations and the experiment in the c
of the d-kicked accelerator, for which there is considerab
broadening of the momentum distribution.

B. Numerical methods

The numerical simulations model idealized quantum a
classical versions of our experimental system, and can
clude the effect of noise. The classical model consists o
iteration of Eqs.~2! and ~3!, and takes into account the ex
perimental kicking strength and initial distribution of the a
oms in position and momentum. In our experiment the ato
are initially distributed almost uniformly over a given perio
of the potential. Their initial distribution in momentum
Gaussian, centered around zero with a FWHM of 12\k2. The
simulation propagates 105 trajectories with a range of initia
conditions that reflects these experimental distributions
gives the momentum distribution of the particle ensemble
any subsequent time. The calculation of the mean ene
from this is straightforward.

In the quantum-mechanical case, we first consider the
fect of the kicking potential. Using the identity

exp@2 ifdcos~ x̂ !#[ (
n52`

`

~2 i !nJn~fd!exp~ inx̂ !, ~6!

we see that the effect of a kick can be decomposed into
infinite sum of momentum displacement operators exp(inx̂)
weighted bynth-order Bessel functions of the first kind
Jn(fd) @we have ignored an irrelevant global phase e
(2ifd)]. When applied to a plane wavec(x)}exp(ikx) this
is fully equivalent to the effect of a phase grating. A pla
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wave in this form with scaled wave numberk corresponds to
a momentum eigenstate with eigenvaluek\G. For the in-
terkick free-evolution operator, we can factorize thex̂ andr̂
dependent parts, resulting in

exp@2 i ~gx̂1 r̂2/2!/t#[exp@2 i ~ r̂21gr̂!/2t#

3exp~2 igx̂/t!exp~2 ig2/4t!.

~7!

It is readily seen that exp(2igx̂/t) is also simply a momen-
tum displacement operator, describing free fall due to gra
tational acceleration between pulses, and that exp@2i(r̂2

1gr̂)/2t#, when applied to a momentum eigenstate, w
simply provide a phase. We will ignore the global pha
exp(2ig2/4t) from now on. The fact that the Floquet oper
tor can be decomposed into a combination of moment
displacement operators and terms proportional to the
mentum operator makes a basis of momentum eigenstate
obvious choice for numerics. This is a direct result of the f
that what is taking place is diffraction of the de Brogl
waves. We, in fact, use a basis that is offset by2g/t in
momentum between successive iterations. This is how
incorporate the effect of exp(2igx̂/t), although the actua
momentum must be used when determining the phasefn
accumulated between successive pulses. In vector nota
we thus defineun& to be a basis state with a scaled mome
tum immediately prior to theNth pulse given byrn,N5r i
1nt2(N21)g, wherer i is the initial scaled momentum o
the plane wave in the direction of the applied standing wa
Using this notation we can depict the effect of the kick a

Ûmn
int 5~2 i !m2nJm2n~fd!um&^nu, ~8!

where m and n are the final and initial diffraction orders
respectively@13#. The free evolution is then expressed by

Ûmn
free5exp~ ifn!dmnum&^nu ~9!

where

fn5
1

2t
@r i

21~nt!21N~N21!g22g~2N21!~r i1nt!

12ntr i #. ~10!

The initial distribution is assumed to be an incohere
superposition of plane waves with different values of th
momentum component along the axis of the periodic pot
tial. Each of these is treated separately and the results
added incoherently by summing probabilities. The relat
populations of different initial momenta~deduced from the
initial experimental momentum distribution! are taken into
account in the simulation. The result of the simulation is t
probability, for each initial plane wave, of occupation
each possible momentum state up tor5660t (⇒p5
660\G), i.e., the probability of having acquired each
these momenta from the kicking potential. This informati
3-6
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APPROACHING CLASSICALITY IN QUANTUM . . . PHYSICAL REVIEW E64 056233
allows us to construct the final state momentum distribut
of the ensemble and hence find the mean energy.

In the case where spontaneous emission is present
momentum of the particle~in the classical case! or the value
of rn,N ~in the quantum case! is modified if an atom under
goes spontaneous emission. However, only the momen
component along the axis of the sinusoidal potential is
significance as far as the kicked dynamics are concer
Since spontaneous emission is a statistical process, a M
Carlo technique is used such that there is a certain prob
ity per atom per kick~determined by the level ofD2 light
applied to the atoms! of a spontaneous emission taking plac
The spontaneously emitted photons are also regarded a
ing equally likely to be emitted in any direction. To tak
account of the stochastic nature of the decay process,
quantum simulation in each case is repeated ten times
the average taken, whereas the classical system alread
cludes a sufficient degree of averaging due to the 105 trajec-
tories that are simultaneously propagated with the appro
ate probability per unit time of a spontaneous emiss
taking place.

IV. RESULTS

A. Variation in mean energy with pulse number

Following the example of Refs.@10,35#, we study the
change in the mean energy of the ensemble with kick nu
ber, the characteristics of which differ markedly betwe
classical and quantum-mechanical systems and are stro
influenced by the presence of noise. We setT560.5 ms, and
consider situations where the applied noise levels are 0
0.2 spontaneous emissions per atom per pulse, both inc
ing and counteracting gravity. We have chosenT so that, in
the zero applied-noise regime, we expect to observe a q
tum accelerator mode when the effect of gravity is includ
(d-kicked accelerator!, and dynamical localization whe
gravity is counteracted (d-kicked rotor!. Data from experi-
ments, quantum simulations, and classical simulations
displayed in Fig. 2; note that the momenta are measured
having subtracted the offset due to gravitational free fall, a
it is from these momenta that the mean energies are ca
lated. The same momentum boundaries were applied to
quantum simulations as to the data. No boundaries were
plied to the classical simulation because localization does
occur, and the cuts would have resulted in part of the wi
momentum distributions being neglected~something the data
cuts were specifically chosen not to do!. This would lead to
an entirely spurious fall-off in the rate of increase in me
energy for larger pulse numbers when the distribution
wide. Assuming the downward and retroreflected beam
be exactly counterpropagating and perfectly aligned with
MOT, the standing wave to have a Gaussian profile, and
power in the beams creating the standing wave to be;120
mW, the estimated mean value offd is half the estimated
maximum value, and is;0.9p. However, due to the uncer
tainty in the precise value of the light intensity experienc
by the atoms, the diameter of the MOT and the alignmen
the beams creating the standing wave, mean values ofd
between 0.5p and 1.5p would not be incompatible with ou
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known experimental parameters. Numerically, we takefd
50.8p, a value which gives closer agreement with the e
perimental data and is well within the range of experimen
uncertainty in the value offd . This means thatI max
50.8p\G. The equivalent classical regime is not one whe
we expect to see significant anomalous diffusion due to c
sical accelerator modes.

In Figs. 2~a! and 2~b!, we observe good, though not pe
fect, qualitative agreement between the experimental and

FIG. 2. Variation of mean energy with pulse number withT
560.5 ms; ~a! experimental results with light detuning of 30 GH
and beam power of;120 mW, ~b! quantum simulation withfd

50.8p, ~c! classical simulation withfd50.8p. The momentum
cuts used for the data and quantum simulation are660\G for the
d-kicked accelerator and630\G for the d-kicked rotor. No cuts
are applied to the output of the classical simulation~see text!. The
inset figures in~a! and ~b! show, on an expandedy axis, the varia-
tion of the mean energy with pulse number for thed-kicked rotor,
both with and without added spontaneous emission, as calcul
using data from the experiment and quantum simulation, resp
tively. Where induced spontaneous emission is present, the m
number of emissions undergone by an atom per pulse is;0.2. The
experimental energies for thed-kicked accelerator in the absence
induced spontaneous emission are systematically lower than t
of the simulation because of the reduced interaction of part of
experimental ensemble of atoms with the potential, imperfect
filment of the conditions for being in the Raman-Nath regime, a
amplitude noise in the potential. Those for thed-kicked rotor are
systematically higher, in the absence of added noise, due to s
noise in the wings of the momentum distribution and amplitu
noise in the potential~see text!.
3-7
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merical quantum systems. Note that, as stated in Sec. II
in the experimental system we effectively have a range
different values forfd , depending on the positions of th
individual atoms in relation to the beam profile, rather th
each atom being kicked with equal strength. As the ex
fraction of atoms experiencing a given value offd is un-
known, it is impractical to take this variation fully into ac
count numerically. In any case, the simulations are used
as to highlight the features of the physical behavior, and
is better achieved by using a unique value offd . The value
of fd50.8p should be understood as an approximate m
value, which should yield qualitatively correct dynamics, n
precise quantitative agreement. The quantitative agreeme
also impaired due to the effect of momentum boundaries
signal threshold that were discussed at the end of Sec. II
and due to the fact that there is always some noise prese
the experimental system.

The qualitative agreement we observe nevertheless
firms our theoretical understanding of the experimental s
tem, particularly the prediction of strikingly different beha
iors due to quantum-mechanical effects in the zero appl
noise case. For thed-kicked accelerator, the mean ener
increases much faster than linearly, almost quadratica
with pulse number, due to the presence of a quantum ac
erator mode, which dominates the mean energy of the
semble. It is evident that after;25 pulses, the experimen
tally measured energy growth is not as rapid as for
quantum simulations, and is in fact approximately line
This is because as the atoms accelerate they increas
leave the Raman-Nath regime. The momentum attained
the accelerated atoms after 50 pulses in this experime
configuration (T560.5 ms), due to both kicks and gravita
tional acceleration, is;57\G, meaning that atoms mov
through 0.38 standing wave periods over the duration of
pulse. This causes an effective reduction in the value offd ,
leading to reduced diffraction efficiency, and hence popu
tion in the accelerator mode, with increasing pulse numb
In the simulations we apply perfectd-kicks, hence we are by
definition always in the Raman-Nath regime. Additional
the amplitude noise in the potential depth~up to ;10%
variation! caused by fluctuations in the power in the stand
wave and the detuning of theD1 light reduces the efficiency
of population of the accelerator mode. This noise is
present in the idealized situation modeled in the simulati
so is also a source of quantitative disagreement.

When the effect of gravity is counteracted (d-kicked ro-
tor!, the mean energy of the system shows a much redu
rate of increase beyond a certain pulse number, corresp
ing to the quantum break time~the third or fourth pulse, in
our case!, and displays small-amplitude quasiperiodic osc
lations. These effects can be seen in the inset figures in
2 and are particularly clear in~b!, which shows the data from
the quantum simulation. The evident difference between
behavior in the experiment and in the quantum simulation
due to the fact that the experiment is not a noiseless sys
even when we do not induce additional spontaneous e
sion through appliedD2 light, due to the variation in the
depth of the periodic potential. This amplitude noise cau
some disruption to the process of dynamical localizati
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leading to nonzero quantum diffusion after the quant
break time. However it is much less than that which resu
from the disruption to the evolution caused by spontane
emission~described below! so that the suppression of th
momentum diffusion rate after the quantum break time
been exceeded is still observable. The effect of this leve
amplitude noise is consistent with that observed in Re
@39,40#. The quasiperiodic oscillations are more difficult
discern unambiguously in the data, though the data are
inconsistent with the result of the simulation. Simulatio
using different values offd show that the period of thes
oscillations depends onfd and, in fact, decreases asfd in-
creases. The fact that the trapped atoms experience a r
of laser intensities means that the resultant variation of
mean energy of the ensemble with pulse number is a su
position of oscillations with different periods. This tends
wash out the quasiperiodic oscillations in the data, wher
they are clearly visible in the simulations performed with
unique value offd . Nonresonant quasiperiodic oscillator
behavior of the type present here has been observed in
merical simulations of the quantumd-kicked rotor
@32,49,50#. The cessation of energy growth is due to dynam
cal localization, where the momentum distribution is exp
nential in form and does not broaden further after the qu
tum break time. Figure 3 shows experimentally measu
momentum distributions after 0 and 30 pulses for both gra
tational scenarios in the presence and absence of ap
noise. The apparent asymmetry in the extreme wings of e

FIG. 3. Experimentally measured momentum distributio
showing the initial distribution of the momenta of atoms in t
MOT ~dotted line!, the distribution after 30 pulses atT560.5 ms
without applied noise~solid line! and the distribution after 30 pulse
at T560.5 ms with applied noise of 0.2 spontaneous emissions
atom per pulse~dash-dotted line!. In ~a! gravity’s effect is present,
and this is example of a quantum accelerator mode in thed-kicked
accelerator. In~b! gravity’s effect is compensated for; this is a
example of dynamical localization in thed-kicked rotor.
3-8
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distribution is, as explained in Sec. III A, due to the lock-
amplifier that was used to amplify the signal from the TO
measurement. The size of the signal in the region where
asymmetry is evident is so small that it is below the level
the signal threshold imposed on the data and therefore
not enter the calculations of the mean energy.

That the differences in observed behavior between
cases where gravity’s effect is unaltered (d-kicked accelera-
tor! and where it is counteracted (d-kicked rotor! are intrin-
sically quantum mechanical is made particularly obvious
the classical simulations plotted in Fig. 2~c!, where, in con-
trast to Figs. 2~a! and 2~b!, the difference in energy growth
for each case is only just noticeable. In each case the m
energy increases essentially linearly with pulse number,
a51 in Eq. ~5!. We are not in a regime of anomalous d
fusion, and the particles effectively execute random walks
momentum space. This behavior is evidently quite differ
from that of the observed quantum-mechanical case in
zero applied-noise regime.

Upon the addition of noise via spontaneous emission,
behavior of our quantum-mechanical system is affected
matically. Firstly, the pronounced quantum-mechanical
fects of enhancement or inhibition of momentum diffusi
have been diminished. This is also clear from Fig. 3. For
d-kicked accelerator, the effect of the noise has been
greatly reduce the population of the accelerator mode, w
for the effectived-kicked rotor the distribution is still appar
ently exponential, but has broadened such that its FW
has increased by;30%. This is consistent with the observ
tions reported in Refs.@37,38#. Secondly, the behavior is les
dependent on the presence or absence of gravity, i.e.
cases of thed-kicked accelerator and thed-kicked rotor are
less distinct from one another, in that the pronounced as
metry in thed-kicked accelerator distribution has been
most removed, the difference in the widths of the distrib
tions has been reduced and in both cases the distribu
continues to broaden with increasing pulse number. Thir
the behavior in the two cases is similar to that of the th
retical classical system in Fig. 2~c! in terms of the linear
variation in mean energy with pulse number. We can imm
diately say that we have made the behavior of the sys
more classicalin appearanceby the introduction of noise
because the responses of the two systems to the applic
of the kicks, as expressed by mean energy growth, are m
similar to one another. By randomizing the phase of
wave packet due to the momentum impulse imparted
spontaneous emission, we have prevented the diffracted
mentum orders from achieving the correct phase relation
at the time of the next pulse. For thed-kicked accelerator
this means that constructive interference of progressiv
higher diffracted orders to yield a linear increase in the m
mentum of a fraction of the atoms does not occur. For
d-kicked rotor, the destructive interference leading to d
namical localization is similarly absent. Thus diffusion co
tinues even after the quantum break time has been excee
this is the quantum diffusion referred to in Sec. II. The s
tem cannot be said to be classical, but, because some o
behavior, viz., the linear rise of mean energy with pu
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number, can be described by a classical model, it is in
sense ‘‘classical-like.’’

For the classical system of Fig. 2~c!, the effect of sponta-
neous emission is small, resulting in a very small decreas
the mean energy attained after a given number of pu
when gravity’s effect is present, and a slightly larger increa
when gravity’s effect is absent. This is because, in the
sence of noise, there is a degree of kick-to-kick correlat
for some particle trajectories, which, for this value ofT, pro-
motes momentum transfer to these particles when gravit
present and inhibits it when gravity is absent~this will be
addressed in more detail in Sec. IV B!. The effect of random
momentum kicks resulting from spontaneous emission is
destroy these correlations, and hence the diffusion rat
slightly altered as stated.

In the case shown in Fig. 2~c!, a51 for all the classical
systems shown, with or without noise and/or gravity, and
observe a linear mean energy increase in the noise-pertu
quantum system. Thus the quantum system behaves m
like the classical. If we were applying a level of noise su
that it dominated the energy growth of the classical syste
this result would not be surprising since the effect of t
noise would be expected to swamp all others in the quan
system as well@30#. However, since we are operating in
regime where the effect of noise on the classical system
small, its marked effect on the quantum system@51#, result-
ing in a convergence in the behavior of the two cases
important. Such convergence of quantum and classical
havior in thed-kicked rotor system has previously been o
served in the work reported in Refs.@35,36,38–40#. The ef-
fect of the levels of spontaneous emission used in
experiment on the mean energy attained after 50 pulse
the case where gravity’s effect is counteracted is consis
with that shown in Refs.@35,36# by Ammannet al. and Ref.
@38# by Klappaufet al. The noise used in Refs.@39,40# was
amplitude noise, and generally of a much higher level th
the noise in our experiment, though the conclusions reac
are also consistent with our assessment of the behavior o
system.

B. Variation in mean energy with pulse period

Another useful approach when considering the behav
of the mean energy is to determine its variation with cha
ing values of different experimental parameters for a
number of pulses. There are three basic parameters tha
termine the dynamical behavior of the system:K, g, and the
quantum-mechanicalt. These can all, in principle, be varie
independently by changingI max, G, T, or the effective value
of g. However, due to the geometry of our system, it
inconvenient to varyG by creation of the standing wav
potential using counterpropagating laser beams where
angle between them is not equal top. The intensity, and
henceI max, can be varied, though with much less precisi
than is possible forg and T. Experimentally, therefore, we
either left gravity’s effect unaltered (d-kicked accelerator!,
or counteracted it as completely as possible using the ph
modulator (d-kicked rotor!, and in both cases variedT be-
3-9
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tween 6.5 ms and 210.5ms in steps of 1ms. The set num-
ber of pulses used was 30, andI max was held constant.

In the classical case the global level of momentum dif
sion in the system is well described by the diffusion para
eterD(K,g), where

D~K,g!5
K2

2 F1

2
2J2~K !cos~g!2J1

2~K !

3cos~2g!1J2
2~K !1J3

2~K !G , ~11!

andJn(K) is thenth-order Bessel function of the first kind.
follows that the mean energy is given byĒN
5NmD(K,g)/(GT)2, where, as before, this is determine
after having subtracted from the momenta the offset due
gravitational free fall. The expression forD(K,g) can be
determined using the method of Fourier paths@12# ~see the
Appendix for an outlined derivation!. This expression in-
cludes the effect of low-order kick-to-kick correlation
@hence the presence of the Bessel function corrections to
random phase resultD(K)5K2/4], although, since it always
assumes linear diffusion, it cannot fully incorporate the
fect of highly correlated classical accelerator modes. Ob
ously, if g50 we regain the usuald-kicked rotor result@12#.

Figure 4 shows the variation, when 30 kicks are applied
both the presence and absence of gravity’s effect (d-kicked
accelerator andd-kicked rotor, respectively!, in the mean

FIG. 4. Variation of mean energy with pulse period according
classical simulation and the analytical prediction of Eq.~11! for 30
pulses withfd50.8p, ~a! in the absence of gravity (d-kicked ro-
tor!, ~b! in the presence of gravity (d-kicked accelerator!. No mo-
mentum cuts have been applied to the results of the simula
Where it is nonzero, the mean number of spontaneous emiss
undergone by an atom per pulse is 0.2.
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energy of the classical system wherefd50.8p and T is
varied ~thus K varies linearly between 1.2 and 49.7!. This
variation is calculated from the analytical prediction giv
by Eq. ~11!, and from numerical simulations, both with an
without noise. Note that the numerical simulations assume
Gaussian initial momentum distribution~the initial position
distribution is uniform!, corresponding to the experiment
situation, whereas the prediction of Eq.~11! assumes a uni-
form distribution in both position and momentum. This m
slightly skew the numerical result relative to the analytic
prediction. Note, however, that even if an initially uniform
distribution is employed for the numerics then, in spite
generally excellent qualitative agreement, quantitative ag
ment is not perfect@12#.

The size of the peaks in mean energy as shown in Fig
is enhanced relative to the analytical prediction of the va
of D(K,g) by the occurrence at these kicking intervals
superdiffusive energy growth: a fraction of the atoms fu
the criteria for entering a long-lived classical accelera
mode@12# due to momentum growth-enhancing correlation
On the other hand energy growth at the troughs is subdi
sive, as there are momentum diffusion-inhibiting corre
tions. At these extremes the analytical prediction is imperf
due to its failure to take into account all correlations.

The effect of gravity on the behavior of the system
clear from comparison of Figs. 4~a! and 4~b!. For small val-
ues of the pulse period, gravity has little effect@g is small
and therefore theg-dependent cosines inD(K,g) have neg-
ligible effect#. However, for larger values the addition
change in position and momentum due to gravitational ac
eration is increased. This will obviously change the init
conditions that lead to normal and anomalous diffusion
different values ofT. In the presence of gravity (d-kicked
accelerator!, the accelerator modes that do occur can o
exist in one or the other direction in momentum space, ne
both simultaneously, as in the zero-gravity (d-kicked rotor!
case. This is because gravity has broken the symmetry o
system.

The effect of adding a spontaneous emission rate of
per atom per pulse does not dramatically alter the dynam
either in the presence or absence of gravity. This was
ferred to in Sec. II and is discussed in Ref.@29#. As the peaks
and troughs observed in the variation of the mean energy
due to kick-to-kick correlations, and as the addition of no
disturbs these correlations, the observed effect is a gen
flattening of these oscillations as the probability of sponta
ous emission rises. This can be seen in Fig. 4, and is con
tent with the classical numerical data plotted in Fig. 2~c!.

The experimental results, plus those of the quantum sim
lations, for thed-kicked accelerator are shown in Fig.
where again the mean number of spontaneous emission
atom per period due to the appliedD2 light was either 0 or
0.2. The corresponding results for the configuration in wh
gravity was compensated for (d-kicked rotor! are shown in
Fig. 6. When comparing our experiments with quantu
simulations, we again see good qualitative agreement.
same experimental imperfections addressed in Sec. IV A
ply equally here, and are responsible for quantitative discr

n.
ns
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FIG. 5. Variation of mean en-
ergy with pulse period after 30
pulses when gravity’s effect is no
counteracted (d-kicked accelera-
tor!. The momentum cut used i
660\G. Where induced sponta
neous emission is present, th
mean number of emissions occu
ring per atom per pulse is;0.2.
Experimental results are for a
light detuning of 30 GHz and
beam power of;120 mW. Quan-
tum simulation results are forfd

50.8p. The labels in the top two
panels are discussed in the tex
Note that the vertical scales in th
simulation graphs differ by a fac
tor of 2 from those of the corre-
sponding experimental graphs.
d
is
b
re

the
m-

ery
ancies. As before, the same momentum cuts were applie
the simulation results as to the experimental data. There
clear offset to the experimental mean energies; this is
cause of background noise in the wings of the measu
05623
to
a

e-
d

momentum distributions, as discussed in Sec. IV A, and
broadening of the atomic momentum distribution due to a
plitude noise in the potential.

The behavior in the quantum-mechanical system is v
r pulse is

of the
rameter

ive values

variation
FIG. 6. Variation of mean energy with pulse period after 30 pulses when gravity’s effect is counteracted (d-kicked rotor!. The momen-
tum cut used is640\G. Where induced spontaneous emission is present, the mean number of emissions occurring per atom pe
;0.2. Experimental results are for a light detuning of 30 GHz and beam power of;120 mW. Quantum simulation results are forfd

50.8p. Note that the vertical energy scales in all the graphs are the same. The variation of the initial value~i.e., at the first pulse! of the
quantum diffusion parameterD(Kq) ~see text! whenfd50.8p has been plotted as a dashed line over the values of the mean energy
d-kicked rotor system calculated from the quantum simulation. This shows that the maxima and minima of the analytical pa
expressing the extent of the momentum diffusion coincide with the observed maxima and minima of the mean energy. The negat
of this quantity are not physical and result from the fact that the expression forD(K) in Eq. ~11!, which is used to obtainD(Kq), is a
truncated series. Inclusion of higher-order terms would avoid this unphysical result, but would not change the gross features of the
with pulse period.
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different from that of the classical system, and is stron
dependent on both the effect of gravity and the level of sp
taneous emission. The most important difference betw
the two cases (d-kicked rotor andd-kicked accelerator! with
zero-induced spontaneous emission is the existence o
pronounced peaks~a! and ~b! in the mean energy to eithe
side ofT566 ms for thed-kicked accelerator~see Fig. 5!.
These peaks indicate quantum accelerator modes. The p
~c!, ~d!, ~e!, and~f! are also due to gravity-induced acceler
tor modes. All the labeled peaks correspond to a lower va
of the mean energy in the experiment than in the simulat
As described in Sec. IV A, amplitude noise in the poten
and the leaving of the Raman-Nath regime with increas
atomic momentum reduce the efficiency of population of
accelerator mode, so these lower experimental values are
pected. Peaks~c! and ~e! are smaller~relative to the sur-
rounding energies! in the experimental data than in the sim
lation. In this experimental configuration~30 pulses applied
T5115.5 ms, 191.5 ms, respectively! the momentum of the
fastest-moving atoms relative to the standing wave, when
effect of gravity is taken into account, is greater than 72\G
~higher than the 57\G attained after 50 pulses withT
560.5 ms). When the atoms have attained momenta in
region, they have left the Raman-Nath regime because
move through a significant fraction (.0.5) of the period of
the standing wave over the duration of an individual pul
This means that they cannot experimentally be acceler
up to these momenta or further with great efficiency. Th
the experimental population of such high-momentum sta
is low. The simulation, however, assumes kicks that are tr
d functions so that the atoms are always in the Raman-N
regime and can be accelerated efficiently to arbitrarily h
momenta. Thus the peaks here are larger in the simula
than in the experiment.

When the effect of gravity is counteracted (d-kicked ro-
tor!, the momentum distribution is exponential in form@as
shown in Fig. 3~b!# after 30 pulses for all pulse periods stu
ied exceptT566.5 ms, T5133.5 ms, andT5200.5 ms.
For pulse periods other than these, dynamical localizatio
setting or has set in. The localization length varies asT var-
ies, thus explaining the observed variation in the mean
ergy, as shown in Fig. 6. The proportionality of the quantu
break time to the localization length, and their variation w
the quantum version of the classical diffusion parame
D(K) @12# are explained in Refs.@32,52#. The values of the
localization length and quantum break time are proportio
to the quantum diffusion parameterD(Kq), i.e., the quantity
obtained whenKq52K sin(t/2)/t is used in the expressio
for the classical diffusion parameterD(K) ~as employed, for
example, by Klappaufet al. @44#!. The quantity D(Kq),
whose value is expressed here in units of energy per pu
has been plotted on Fig. 6 over the variation of the me
energy as calculated from the quantum simulation for
d-kicked rotor.D(Kq) in these units gives the initial rate o
increase in the mean energy with pulse number. At hig
pulse numbers, however, the energy value obtained by m
tiplying D(Kq) by the pulse number will not give the corre
mean energy of an ensemble of atoms. This is becaus
dynamical localization begins to occur~and the smaller the
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quantum break time, the earlier this happens!, the effective
diffusion parameter decreases@53#, eventually falling to
zero. The initial value ofD(Kq) is a good indicator of the
extent of energy transfer to the system, and it is clear that
maxima and minima inD(Kq) and in the mean energy ar
coincident, including the quantum resonance spikes aT
566.5 ms, T5133.5 ms, and T5200.5 ms ~see below!.
Contrasting the behavior for two different values ofT, at T
530.5 ms the distribution has not yet localized after 3
pulses~though it has become exponential in form! and con-
tinues to broaden with increasing pulse number. On the o
hand, atT560.5 ms localization occurs after;3 pulses,
after which essentially no further mean energy growth
curs, as shown in Fig. 2 and discussed in Sec. IV A. Fr
Fig. 6, the variation in the mean energy attained after
pulses appears periodic when gravity is absent; the perio
the half-Talbot time. This periodic variation of the quantu
break time and localization length is in agreement with
behavior deduced fromD(Kq).

The behavior of the system whenT566.5 ms, T
5133.5 ms, andT5200.5 ms merits further discussion. A
these times the kicking interval is such that the system is
a quantum resonance. The principal quantum resonance
our system occurs for a pulse period of 133.4ms ~the so-
called ‘‘Talbot time’’! @11#. Using the notation defined in
Sec. II,t54p at the Talbot time. The Talbot time is define
using the phase evolved between pulses by diffracted or
from a plane wave that has no initial momentum in the
rection of the grating. The Talbot time is the interval b
tween pulses over which adjacent diffracted orders from s
a plane wave, in the absence of gravity, accumulate a ph
difference through their free evolution of 2p. It is given by
TTalbot54pm/(\G2). As noted in Sec. II, additional reso
nances occur for rational multiples of this time. The res
nances at 66.7ms and 200.1ms are the lowest and second
lowest second-order resonances. Quantum resonances
been investigated experimentally for thed-kicked rotor
@43,44#, which has been found to be characterized in th
circumstances by a momentum distribution that is nonex
nential. Figure 7 shows the momentum distribution of ato
from our MOT after 30 pulses have been applied withT
566.5 ms. The significant population in the wings of th
distribution, which should be contrasted with that of F
3~b!, demonstrates that ballistic acceleration of certain m
mentum classes of atoms has occurred and confirms tha
have a quantum resonance. Both the experiment and sim
tion indicate that the energy~see Fig. 6! acquired by the
system is small for times in the regions around 66ms,
133 ms, and 200ms but that the energy acquired by th
system whenT566.7 ms, 133.4 ms, and 200.1ms is a lo-
cal maximum, with a momentum distribution that is none
ponential.

At a quantum resonance there is symmetric, linear gro
in the momentum width with pulse number for certain d
crete initial values of the quasimomenta. For a system wit
continuous initial spread in quasimomenta, as we have, th
is a linear growth in the mean energy with pulse number
the long-time limit, as explained in Sec. II. For higher-ord
resonances, this takes a larger number of pulses to man
3-12
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APPROACHING CLASSICALITY IN QUANTUM . . . PHYSICAL REVIEW E64 056233
itself, and the resonance itself is narrower inT space than for
low-order resonances. The behavior we observe regar
quantum resonances is in agreement with the observatio
Ref. @43#; we, however, choose to identify resonances
studying the variation of the mean energy of the syste
rather than observation of the form of the momentum dis
bution itself@43#. The height of the peaks in the mean ener
due to quantum resonances, as shown in Fig. 6, is small
the experimental data than in the quantum simulation. Th
because the experimental population of the high-momen
states causing these peaks in the mean energy is lower
in the simulation due to the imperfect experimental fulfi
ment by high-momentum atoms of the conditions for be
in the Raman-Nath regime.

Additional data~not shown here! show that whenfd is
increased, the period between maxima in the mean ener
reduced, although the features in the region of the quan
resonances, and the periodicity determined by the h
Talbot time, remain fixed. Again, this is predicted by the u
of Kq in the expression for the diffusion parameter. In t
classical system, an increase infd results in a similar reduc
tion in the period between maxima in the mean energy.

Turning now to the process of spontaneous emission, w
reference to Fig. 5, the most marked effect of its introduct
in the presence of gravity is to reduce the height of the p
nounced peaks in the mean energy due to the quantum
celerator modes. Since quantum accelerator modes rely
their existence on the correct accumulation of phase by
various diffracted momentum orders, the disruption to t
phase due to the spontaneous emission destroys the m
When the spontaneous emission probability is low (,0.01
spontaneous emissions per atom per pulse! a significant frac-
tion of the atoms will not undergo spontaneous emiss
during 30 kicks. As the probability grows, the effect of spo
taneous emission becomes more serious with the result
the accelerator mode peaks have been greatly degraded
the mean number of spontaneous emissions per atom
kick is 0.2. In fact, the noise reduces the mean energy
tained by the system after 30 pulses for all pulse periods;

FIG. 7. Experimentally measured momentum distributio
showing the initial distribution of the momenta of atoms in t
MOT and the nonexponential form of the distribution after
pulses withT566.5 ms when gravity’s effect is absent (d-kicked
rotor!. This is an example of a quantum resonance, in which ba
tic acceleration of atoms in certain momentum classes occurs.
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just that the destruction of the accelerator mode is the m
dramatic effect. When the spontaneous emission leve
high, the variation in mean energy with pulse period is rat
featureless, due to the destruction by noise of the correlat
responsible for accelerator modes. Thus the distinctiv
quantum effect constituted by the accelerator modes
been degraded by the presence of noise.

For the d-kicked rotor, see Fig. 6, increasing levels
spontaneous emission increase the mean energy becaus
account of the perturbing effect of noise, dynamical localiz
tion no longer occurs. The increase in energy is most sign
cant for those values ofT where the quantum break time, an
hence the mean energy, would be smallest in the absenc
noise. The difference in the mean energies of the system
the cases of no applied spontaneous emission and 0.2 s
taneous emissions per pulse is greater in the quantum s
lation than in the experiment. This is because, as descr
previously, the experimental system is not free from the p
turbing effects of noise even when no spontaneous emis
is induced by appliedD2 light. Thus in the experiment, dy
namical localization has already been degraded to a ce
extent without any appliedD2 light. This means that the
mean energies calculated from the experimental data
higher in the ‘‘no spontaneous emission’’ case than th
calculated from the output of the quantum simulation. T
presence of this amplitude noise in the potential also me
that when additional noise is introduced by theD2 light, the
effect is less dramatic in the experiment than in the simu
tion, where we truly move from a noiseless situation to o
in which noise is significant. In the experiment too, noise
significant when theD2 light is applied, but it is not negli-
gible when noD2 light is applied. Therefore the differenc
between the behavior in the two situations is not as p
nounced as in the simulation.

A very interesting point to note is that, for thed-kicked
rotor configuration, the noise has the effect of degrading
quantum effect of dynamical localization, but ofenhancing
the local maximum in mean energy at the quantum re
nances~see Fig. 6!. The height of the local maxima atT
;66,133,200ms, is increased relative to the energy attain
at neighboring values ofT, and the width of these peaks
also increased. Since the resonances are a quantum phe
enon, one would have expected noise to remove their sig
ture ~the local maxima in energy!. This is actually not the
case, an observation that is somewhat surprising@53,54#.

V. CONCLUSION

We have presented experimental and theoretical resul
investigations into the behavior of an atom optical system
which approximated-kicks are applied, using a pulsed stan
ing wave of laser light, to cold atoms falling freely und
gravity. The effect of gravity can be effectively counteract
by appropriate shifting of the position of the standing wav
The presence of a gravitational potential (d-kicked accelera-
tor! leads to the occurrence of a specifically quantu
mechanical phenomenon, which we call quantum acceler
modes@11#. When gravity is counteracted (d-kicked rotor!
we observe the well-known effect of dynamical localizati

,
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M. B. d’ARCY et al. PHYSICAL REVIEW E 64 056233
@24#. The effect on the system of the presence of noise
been observed and discussed. The behavior of the syste
found to be well described by quantum-mechanical simu
tions that rely on a diffractive picture of the effect of th
periodic potential. Both the experimental results and
quantum simulations indicate that the introduction of no
to the system causes significant degradation to characte
cally quantum aspects of the system’s behavior, i.e., qu
tum accelerator modes and dynamical localization. The n
reduces the difference in behavior between the two grav
tional scenarios, and results in the restoration of some
pects of the behavior seen in classical simulations, for wh
the modification in behavior due to the noise is small. T
disruption to the coherent evolution of the system by no
which is formally analogous to the process of continuo
measurement@51#, makes the quantum dynamics mo
classical-like, although not identical to the behavior of t
equivalent ideal classical system. In this case our system
noise-perturbed quantum system that exhibits certain cha
teristics of an ideal classical system.
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APPENDIX: DERIVATION OF D„K,g…

We have essentially followed the derivation for th
d-kicked rotor diffusion parameter of Chap. 5 of Lichtenbe
and Lieberman@12#, using the method of Fourier paths an
making appropriate modifications to incorporate the effec
g. Thus the recursion relation for the Fourier coefficien
takes the form
cs
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an~m,q!5
1

~2p!2E dxdrexp@2 i ~mx1qr!#

3E dx8dr8d~r2r82K sinx81g!

3d~x2x82r82K sinx81g/2!

3E dq8(
m8

exp@ i ~m8x81q8r8!#an21~m8,q8!,

~A1!

which, after integration, becomes

an~m,q!5 (
l 52`

`

Jl~ uq1muK !an21@m1 l sgn~q1m!,

q1m#exp@ i ~q1m/2!g#. ~A2!

Through repeated substitution of this recursion relation
arrive at

an~mn ,qn!5 (
l n ,•••,l 1

Jl n
~ uqn21uK !•••Jl 1

~ uq0uK !a0~m0 ,q0!

3expF igS (
k51

n

qn2k2
mn2k

2 D G . ~A3!

In the case of a path ofn steps remaining at the origin in
Fourier space, this simplifies to

an~0,q!5@J0~Kq!#na0~m0 ,q!expF ig(
l 51

n

qS qn2 l2
mn2 l

2 D G .

~A4!

Including the standard low-order corrections by consid
ation of paths that briefly leave the origin, we determine
following K- andg-dependent diffusion parameter:

D̃n~K,g!5
K2

2 F1

2
2J2~K !cos~g!2J1

2cos~2g!

1J3
2~K !1J2

2~K !G2gr̄ i1
ng2

2
, ~A5!

wherer̄ i is the mean initial scaled momentum. We subtra
away the offset due to uniform gravitational acceleration
arrive at the formula we use in Eq.~11! in the text, i.e.,
D(K,g)5D̃n(K,g)1gr̄ i2ng2/2.
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